Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Aquabis(crotonato)bis(pyridine)copper(II)

Ricardo Baggio et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

[^0]Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Aquabis(crotonato)bis(pyridine)copper(II)

Ricardo Baggio, ${ }^{\text {a* }}$ Bruce Foxman, ${ }^{\text {b }}$ Maria Teresa Garland, ${ }^{\text {c }}$ Mireille Perec ${ }^{d}$ and Wen Shang ${ }^{\text {b }}$

${ }^{\text {a }}$ Departamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, ${ }^{\mathbf{b}}$ Department of Chemistry, MS 015, Brandeis University, Waltham, MA 02454-9110, USA, ${ }^{\text {c }}$ Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago de Chile, Chile, and d Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, UNBA, Buenos Aires, Argentina Correspondence e-mail: baggio@cnea.gov.ar

Received 11 September 2000
Accepted 4 October 2000

Data validation number: IUC0000281
The title compound, $\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCH}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$], crystallizes as a monomer, with the copper ion in a pentacoordinated square-pyramidal environment, bisected by a twofold axis passing through the metal atom and the apex. The molecules organise in chains connected by hydrogen bonds running along the unique b axis.

Comment

The structure of the title compound, (I), is formed by mononuclear $\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCH}_{3}\right)_{2}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ units $\left(\mathrm{O}_{2} \mathrm{C}-\right.$ $\mathrm{CH}=\mathrm{CHCH}_{3}$ is trans-2-butenoate and py is pyridine), in which the metal ion as well as the water molecule lie on a twofold symmetry axis, so that only one trans-2-butenoate and one pyridine ligand are independent. The copper coordination geometry is that of a square pyramid, with the N atoms from the py ligands $[\mathrm{Cu}-\mathrm{N} 12.034(2) \AA]$ and the bonded carboxylate O atoms from the trans-2-butenoate $[\mathrm{Cu}-\mathrm{O} 8$ 1.938 (2) \AA] defining the quasi-planar square base (maximum deviation from the mean plane for $\mathrm{N} 1,0.12 \AA$), and the copper ion slightly shifted by 0.08 (1) \AA towards the apex. The apical

(I)
site is occupied by the water molecule $[\mathrm{Cu}-\mathrm{O} 1 W$ 2.211 (3) \AA] , a bond which coincides with the twofold symmetry axis and is thus exactly perpendicular to the basal plane. The arrangement of the $\mathrm{CuN}_{2} \mathrm{O}_{3}$ core is nearly identical to that reported for the related imidazole (Im) complex
$\left[\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CCH}=\mathrm{CHCH}_{3}\right)_{2}(\mathrm{Im})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (Escriva et al., 1996).
The trans-2-butenoate ligand is built up by two strictly planar sub-groups defined by $\mathrm{O} 7 / \mathrm{O} 8 / \mathrm{C} 9 / \mathrm{C} 10$ and $\mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 11 /$ C12, with deviations from the mean planes of less than $0.01 \AA$. These two planes are rotated around the $\mathrm{C} 9-\mathrm{C} 10$ bond by $c a$ 15°.

The $\mathrm{C}-\mathrm{O}$ bond of the outer carboxylate ($\mathrm{C} 9-\mathrm{O} 7$) is only slightly shorter than the $\mathrm{C}-\mathrm{O}$ bond $(\mathrm{C} 9-\mathrm{O} 8)$ to the copper ion, 1.231 (4) versus 1.274 (3) \AA, suggesting the engagement of O7 in hydrogen bonding as described below. The pyridine group hardly deviates from planarity (maximum deviation $0.013 \AA$ for C6) and binds to the cation adopting a slanted position with respect to the basal plane $\left[120.7(1)^{\circ}\right]$. This appears to be due to the steric hindrance between adjacent pyridine units along the short unique b axis and determines that the nearest H atoms of neighbouring py rings are found at a non-interacting distance of $\sim 3.20 \AA$. The rotation of the py groups determines the 15° rotation of the carboxylate end of the trans-2-butenoate mentioned above. Steric reasons also, now involving the pairs $\mathrm{H} 2 A-\mathrm{O} 7$ and $\mathrm{H} 6 A-\mathrm{O} 8$ (H atoms from py and O atoms from trans-2-butenoate), stabilize the $\mathrm{H} \cdots \mathrm{O}$ distances at $\sim 2.9 \AA$, which is beyond the distance of van der Waals interactions.

The monomers pack into rows parallel to $<010\rangle$. The interaction among neighbouring units is achieved through a couple of strong hydrogen bonds duplicated by symmetry $\left[\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O}^{\mathrm{i}}: ~ \mathrm{O} 1 W-\mathrm{H} 1 W \quad 0.78(3) \AA, \quad \mathrm{H} 1 W \cdots \mathrm{O}^{\mathrm{i}}\right.$ 1.95 (3) $\AA, \mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O}^{\mathrm{i}} 170(3)^{\circ}$; symmetry code: (i) x, $y-1, z]$. These one-dimensional structures parallel to $<010>$ stack in such a way that the protruding organic ligands in a chain fit into the voids left by adjacent equivalent groups in the neighbouring chains. The result is that the $\mathrm{C} 10=\mathrm{C} 11$ double bonds in the trans-2-butenoate end up facing each other, parallel and separated by distances of $c a 3.90 \AA$. The pyridinic cycles face the terminal methyl H atoms at distances in the range $3.70-3.90 \AA$. These facts suggest the possibility of secondary interactions between chains, which may contribute to the crystal structure stabilization.

Experimental

To a 1:1 pyridine-ethanol solution (25 ml) at room temperature was added copper crotonate prepared from crotonic acid ($1.0 \mathrm{~g}, 11 \mathrm{mmol}$) and freshly prepared $\mathrm{Cu}(\mathrm{OH})_{2}(0.5 \mathrm{~g}, 5 \mathrm{mmol})$. A deep-blue solution was formed under continous stirring; after two weeks, crystals of the pyridine adduct were removed by filtration, washed with cold water and dried in air (yield: $1.6 \mathrm{~g}, 80 \%$). Analysis calculated (found) for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{CuN}_{2} \mathrm{O}_{5}: \mathrm{C} 52.75$ (52.60), H 5.40 (5.30), N 6.80 (6.95), Cu 15.50%. IR (KBr disc, cm^{-1}): $3235(\mathrm{~m}), 3077(\mathrm{~m}), 3014(\mathrm{~m})$, $1661(v s), \quad 1605(s), \quad 1578(s v), \quad 1567(v s), \quad 1488(m), \quad 1449(v s)$, $1390(v s), 1371(s), 1217(m), 1071(m), 979(s), 856(m), 760(m)$, $733(m), 696(s), 640(m), 268(m)$. The reactants (Aldrich Chemical Co.) were used without further purification. The elemental analyses (CHN) were performed on a Carlo Erba EA 1108 instrument; the IR spectra were recorded with a Nicolet 510P FT-IR spectrophotometer.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=409.92$
Monoclinic, C2/c
$a=15.922$ (2) Å
$b=5.7331$ (8) \AA
$c=21.341$ (3) \AA
$\beta=91.097$ (11) ${ }^{\circ}$
$V=1947.6(5) \AA^{3}$
$Z=4$

Data collection

Siemens R3m diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
($X E M P$ in SHELXTL/PC; Sheldrick, 1994)
$T_{\text {min }}=0.50, T_{\text {max }}=0.73$
1866 measured reflections
1699 independent reflections
1476 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.082$
$S=1.068$
1699 reflections
123 parameters
$D_{x}=1.398 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=7.5-12.5^{\circ}$
$\mu=1.15 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, blue
$0.36 \times 0.16 \times 0.08 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.026 \\
& \theta_{\max }=25^{\circ} \\
& h=0 \rightarrow 18 \\
& k=0 \rightarrow 6 \\
& l=-25 \rightarrow 25 \\
& 2 \text { standard reflections } \\
& \text { every } 98 \text { reflections } \\
& \text { intensity decay: }<2 \%
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.04 P)^{2}+2 P\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 8$	$1.9381(17)$	$\mathrm{Cu}-\mathrm{O} 1 W$	$2.211(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.034(2)$		
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 8$	$178.13(12)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 1^{\mathrm{i}}$	$169.26(12)$
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 1$	$90.77(8)$	$\mathrm{O} 8-\mathrm{Cu}-\mathrm{O} 1 W$	$89.07(6)$
$\mathrm{O} 8-\mathrm{Cu}-\mathrm{N} 1$	$89.41(8)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 1 W$	$95.37(6)$

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

H atoms attached to carbon were included in idealized positions and refined using a riding scheme, both for coordinates and for displacement parameters. Those pertaining to the aqua molecule were found in the difference Fourier map and were refined with restraints on the $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances.

Data collection: P3/P4-PC (Siemens, 1991); cell refinement: P3/P4$P C$; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: CIFTAB in SHELXTL/PC and PARST (Nardelli, 1983).

This work was supported by the Universidad de Buenos Aires and by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina). The work at Brandeis University was supported in part by the National Science Foundation, through grant DMR-9629994. MP is a member of CONICET. We thank Miss A. Petragalli for the TGA measurements. The provision of a free-of-charge license to the CSD system by the Spanish Research Council (CSIC) in gratefully acnowledged.

References

Escriva, E., Sanau, M., Folgado, J.-V., Garcia-Lozano, J. \& Aarif, A. M. (1996). Polyhedron, 15, 3271-3276.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1991). P3/P4-PC. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: (C) 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

